Efficient Joint-Dimensional Search with Solution Space Regularization for Real-Time Semantic Segmentation

نویسندگان

چکیده

Semantic segmentation is a popular research topic in computer vision, and many efforts have been made on it with impressive results. In this paper, we intend to search an optimal network structure that can run real-time for problem. Towards goal, jointly the depth, channel, dilation rate feature spatial resolution, which results space consisting of about $$2.78\times 10^{324}$$ possible choices. To handle such large space, leverage differential architecture methods. However, parameters searched using existing methods need be discretized, causes discretization gap between found by their discretized version as final solution search. Hence, relieve problem from innovative perspective regularization. Specifically, novel Solution Space Regularization (SSR) loss first proposed effectively encourage supernet converge its discrete one. Then, new Hierarchical Progressive Shrinking method presented further achieve high efficiency searching. addition, theoretically show optimization SSR equivalent $$L_{0}$$ -norm regularization, accounts improved search-evaluation gap. Comprehensive experiments scheme efficiently find yields extremely fast speed (175 FPS) small model size (1 M) while maintaining comparable accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Semantic Segmentation with Label Propagation

Despite of the success of convolutional neural networks for semantic image segmentation, CNNs cannot be used for many applications due to limited computational resources. Even efficient approaches based on random forests are not efficient enough for real-time performance in some cases. In this work, we propose an approach based on superpixels and label propagation that reduces the runtime of a ...

متن کامل

Real-Time Semantic Clothing Segmentation

Clothing segmentation is a challenging field of research which is rapidly gaining attention. This paper presents a system for semantic segmentation of primarily monochromatic clothing and printed/stitched textures in single images or live video. This is especially appealing to emerging augmented reality applications such as retexturing sports players’ shirts with localized adverts or statistics...

متن کامل

Real-Time Semantic Segmentation Benchmarking Framework

Semantic segmentation has major benefits in autonomous driving and robotics related applications, where scene understanding is a necessity. Most of the research on semantic segmentation is focused on increasing the accuracy of segmentation models with few research on real-time performance. The few work conducted in this direction does not also provide principled methods to evaluate the differen...

متن کامل

ShuffleSeg: Real-time Semantic Segmentation Network

Real-time semantic segmentation is of significant importance for mobile and robotics related applications. We propose a computationally efficient segmentation network which we term as ShuffleSeg. The proposed architecture is based on grouped convolution and channel shuffling in its encoder for improving the performance. An ablation study of different decoding methods is compared including Skip ...

متن کامل

RTSeg: Real-time Semantic Segmentation Comparative Study

Semantic segmentation benefits robotics related applications especially autonomous driving. Most of the research on semantic segmentation is only on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the different design choices for segmentation. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Vision

سال: 2022

ISSN: ['0920-5691', '1573-1405']

DOI: https://doi.org/10.1007/s11263-022-01663-z